Примеряем „пифагоровы штаны"

Один рассеянный ученик по ошибке принес на урок геометрии вместо тетради футбольный мяч. Пришлось ему на мяче чертить всевозможные чертежи. Но вышла незадача: углы треугольников никак не складывались в два прямых. Выходило больше. А когда задали за­дачку на теорему Пифагора, ученик-футболист аккурат­но составил из геодезических линий прямоугольный треугольник, измерил стороны, сложил квадраты кате­тов — и получилось больше, чем квадрат гипотенузы! «Пифагоровы штаны» оказались велики для футболь­ного мяча.

Примечательный случай произошел также с одним бравым ковбоем. Он воспылал симпатией к геометрии, но вместо тетради делал построения на лошадином седле. Тут сумма  углов треугольника получилась мень­ше двух прямых, сумма же квадратов катетов — меньше квадрата гипотенузы. На седло «пифагоровы штаны» не натянулись. Они для седла малы.

Почему же? Разве теорема Пифагора не везде спра­ведлива? И теорема о сумме углов треугольника тоже не универсальна?

Да, это так. Метрические правила неодинаковы на поверхностях разной кривизны. Они ведь выводятся из первоначального постулата о пересечении геодезических линий. На сфере, на седле, на плоскости эти линии пе­ресекаются по-разному — отсюда разные суммы углов треугольников и усложненные (геометры говорят — обобщенные) варианты теоремы Пифагора.