Архив рубрики: Вдоль поверхности

Разгадка поверхности

На плоскости — проще всего. Там все точно по Евклиду. А поэтому строгое соблюдение школьных теорем — верный признак плоскости. Какие треуголь­ники ни строй, всегда сумма углов равна двум прямым.

Какие прямоугольные треугольники ни приставляй к расстоянию, всегда соблюдается равенство квадрата гипотенузы сумме квадратов катетов.

Жаль, что, будучи блином, я сразу не захватил с со­бой рулетку и транспортир. Имея их, я не возился бы с пересечением геодезических, когда определял, какова моя поверхность. Не ползал бы, не уставал. Начертил бы треугольник, посчитал бы сумму углов, вышло два прямых — значит, моя поверхность плоская. Или сделал бы проверку по теореме Пифагора. Совпала сумма квадратов катетов с квадратом гипотенузы — есть доказательство плоскости.

Будь моя поверхность неплоская, вышло бы как у геометра-футболиста и геометра-ковбоя. Сумма ква­дратов катетов больше квадрата гипотенузы («пифа­горовы штаны» велики) — значит, я на шаре. Сумма квадратов катетов меньше квадрата гипотенузы («пи­фагоровы штаны» малы) — значит, я на седле. Анало­гично с суммой углов треугольника. Больше она двух прямых — треугольник начерчен на сфере, меньше — на седле.

Надеюсь, сказанное до сих пор не внушило вам недо­верия. Пока шли разговоры о поверхностях, ничуть не удивительно, что их кривизна связана с метрикой. Это — как резиновая игрушка «уйди-уйди». Вообразите, что тетрадная страничка с геометрическими чертежами тоже резиновая, раздуйте ее в пузырь, натяните на седло или бублик — размеры углов и длин на чертежах тотчас станут другими. Ничего странного. Мимоходом стоит заметить, что любую поверхность можно де­формировать и без изменения законов пересечения геодезических линий, а значит, без изменений метрики. Сложите тетрадный лист, скомкайте его, сверните в трубочку — во всех чертежах расстояния и углы останутся прежними. Чтобы «изнутри» отличить цилиндр от плоскости, потребуются другие соображения. Например, на цилиндре любая геодезическая (кроме образующей) замкнута — либо эллипс, либо круг. Об этой тонкости не надо забывать, но она — лишь ча­стный случай.

Но через эти простые вещи мы с вами подходим к неизбежности труднейшего логического скачка — с кривой поверхности в кривое пространство. К опреде­лению его кривизны изнутри, без оценок «со стороны».

Примеряем „пифагоровы штаны"

Один рассеянный ученик по ошибке принес на урок геометрии вместо тетради футбольный мяч. Пришлось ему на мяче чертить всевозможные чертежи. Но вышла незадача: углы треугольников никак не складывались в два прямых. Выходило больше. А когда задали за­дачку на теорему Пифагора, ученик-футболист аккурат­но составил из геодезических линий прямоугольный треугольник, измерил стороны, сложил квадраты кате­тов — и получилось больше, чем квадрат гипотенузы! «Пифагоровы штаны» оказались велики для футболь­ного мяча.

Примечательный случай произошел также с одним бравым ковбоем. Он воспылал симпатией к геометрии, но вместо тетради делал построения на лошадином седле. Тут сумма  углов треугольника получилась мень­ше двух прямых, сумма же квадратов катетов — меньше квадрата гипотенузы. На седло «пифагоровы штаны» не натянулись. Они для седла малы.

Почему же? Разве теорема Пифагора не везде спра­ведлива? И теорема о сумме углов треугольника тоже не универсальна?

Да, это так. Метрические правила неодинаковы на поверхностях разной кривизны. Они ведь выводятся из первоначального постулата о пересечении геодезических линий. На сфере, на седле, на плоскости эти линии пе­ресекаются по-разному — отсюда разные суммы углов треугольников и усложненные (геометры говорят — обобщенные) варианты теоремы Пифагора.

Что такое метрика

Я все еще блин. Побывал на сфере и седле, теперь переведен на плоскость. Хлопочу о возврате высоты и объема, но пока безуспешно. И от нечего делать зани­маюсь геометрией. Это тем более любопытно, что мне на плоскость прислали два отличных инструмента — транспортир и мерную рулетку. Могу измерять длины и углы (по-прежнему — мгновенно, то есть в рамках классической физики).

Отправной пункт моих рассуждений — тот самый постулат о единственности прямой, не пересекающейся с данной прямой, по которому без всяких доказательств устанавливается, что поверхность — плоскость. В давние времена великий греческий геометр Евклид вывел из этого постулата всю геометрию плоскости — плани­метрию.

Следом за Евклидом я строю углы, треугольники, квадраты, делаю всевозможные отсчеты, доказываю теоремы. Постепенно я убеждаюсь, что на плоскости действует строгая система правил измерения расстояний. Геометры называют эти правила метрикой.

Метрические теоремы — не новинка для любого вось­миклассника. Главная из них — теорема Пифагора, зна­менитые в поколениях школяров всех стран и наций «пифагоровы штаны». Теорема утверждает: в прямо­угольном треугольнике сумма квадратов меньших сто­рон (катетов а и b) обязательно равна квадрату боль­шей стороны (гипотенузы S):

S2 = а2 + b2

Я, блин, горжусь, что сумел процитировать эту фор­мулу по памяти, не заглядывая в учебник.

Кроме теоремы Пифагора, предметом моей гордости служит доказательство еще одного важного утвержде­ния из школьной программы: в любом треугольнике сумма углов строго равна двум прямым. Ни больше ни меньше. Надеюсь, и эту теорему вы нe забыли.

Пересечение параллельных

Я намечаю на поверхности две точкиА и В. Соеди­няю их туго натянутой, но не отделяющейся от поверх­ности ниткой. По этой нитке провожу линию. И назы­ваю ее прямой.

Основания для такого названия у меня есть: во-первых, линия идет по кратчайшему расстоянию между А и В, а во-вторых, из-за сугубой близорукости я вижу вокруг себя плоские участки поверхности. Это, естест­венно, наводит меня на предположение, что и вся она плоская.

Затем я ставлю на поверхности произвольную точ­ку С, не лежащую на прямой АВ, и пытаюсь провести через нее прямые линии, которые нигде не пересекутся с моей первоначальной прямой.

Я усердно работаю. Ползаю туда-сюда, тяну нитки, провожу линии. В конце концов построение закончено. И я прихожу к одному из трех выводов:

  1. Через точку С проходит только одна прямая ли­ния, не пересекающаяся с АВ.
  2. Удается построить сколько угодно таких линий (прямейших, но не прямых).
  3. Нет ни одной прямейшей линии, которая, прохо­дя через С, не пересекалась бы с АВ.

В первом случае моя поверхность — наверняка плоскость. Во второмседло или какой-нибудь граммофон­ный раструб. В третьем — сфера либо что-нибудь вроде яичной скорлупы.

Вот смотрите сами:

При взгляде «со стороны» лишь для плоскости оправдалось как будто название «прямая» в примене­нии к кратчайшей линии. На непрямых же поверхностях кратчайшие расстояния отмерялись по кривым. Вслед за геометрами я называю их геодезическими (сюда от­носятся, например, экватор и меридианы глобуса, а параллели не относятся: не по ним отмериваются на зем­ном шаре кратчайшие расстояния).

Я—блин

Для новичка это очень странные слова — «кривизна пространства». Чтобы привыкнуть к ним, ответим сна­чала на несколько риторических вопросов.

Как мы узнали, что глобус круглый?

Посмотрели на него со стороны, из окружающего пространства.

Как мы узнали, что классная доска прямая?

Взглянули на нее откуда-то сбоку, опять-таки из окружающего пространства.

А как узнать, прямое ли само пространство?

И на пространство «поглядеть сбоку»? Но это не­возможно. Нельзя покинуть пространство, выйти из него, как из дома, чтобы полюбоваться на него издали. Как ни убегай из него, все равно, останешься в нем же.

Выходит, нет способов определить, кривое простран­ство или прямое?

Попробуем все же поискать их. Попробуем исследо­вать пространство изнутри, не выходя из него. Но не сразу.

Я сперва расскажу, как решается аналогичная за­дача для поверхности: постараюсь узнать, какова по­верхность, не глядя на нее «сбоку», а находясь непо­средственно на ней.

Ради наглядности я готов «разбиться в лепешку». Буквально так.

Смотрите: я полностью теряю свой рост, объем, пре­вращаюсь в бесконечно тонкий блин и оказываюсь либо на сфере, либо на седле, либо на плоскости — сам не знаю где.

В качестве этого поверхностного новосела я получаю от вас задание: не сходя с поверхности, определить, ка­кова она.

Условия задания. Сперва — затрудняющие.

Допускается, что я — маленький блин, а поверхность большая, причем в сколь угодно малых участках она сколь угодно мало отличается от плоскости. Кроме того, я близорук, а потому могу обследовать, не сдви­гаясь с места, только ближайшие участки поверхности. И вижу лишь то, что находится на ней.

А вот условия, облегчающие решение.

Ползать по поверхности мне разрешено, и сколь угодно далеко. Наконец, считается, что я разумный блин. Умею рассуждать и чертить геометрические фигуры.

Что же мне, блину, делать?

А вот что.

Ножницы, глобус, седло

Вот вопрос: «прямое» и «кривое» — как отличить одно от другого? И что такое вообще кривизна и пря­мизна?

Прямой хочется назвать линию, которая проложена по кратчайшему расстоянию между двумя точками, а кривой — ту, что обходит прямую. Не зря ведь гово­рят: «объехать по кривой». Поэтому понятие прямизны тесно связано с понятием расстояния.

Теперь поймите главное: никакое расстояние не су­ществует само по себе. Оно всегда отмеривается по че­му-то конкретному — по дороге, по тетрадной странице или горному склону, либо, скажем, по световому лучу или по веревке, туго натянутой в пустоте.

Геометры говорят абстрактно и обобщенно: рас­стояния отмериваются по линиям, по поверхностям, в пространстве. Физики, соглашаясь с геометрами, помнят, однако, что все эти геометрические термины отражают реальные свойства нашего мира.

Кроме того, физик вкладывает свое определенное содержание в слово «отмеривать». Он помнит, что лю­бое измерение требует не только математической корректности. Необходимы еще соответствующие приборы — линейки и часы.

Да, именно часы — ведь никакое измерение нельзя даже мысленно исполнить мгновенно, это мы с вами хорошо уяснили в десятой главе (Следствия — после причин, прим ред.), когда рассуждали о предельности скорости света и других особенностях эйнштей­новского толкования природы.

Таким образом, определение расстояний, как и вся­кий измерительный процесс,— совершенно очевидное физическое исследование. Тут геометрия зримо обора­чивается физикой, физикой пространственных движении.

Пока, впрочем, забудем о часах. Допустим, что мы умеем измерять длины мгновенно. Это разрешено в физике медленных по сравнению со светом движений, в физике Ньютона. И поставим первую простенькую задачку.

Пусть даны две точки А и В — концы разведенных и крепко свинченных ножниц. И пусть расстояние меж­ду ними нужно определить по поверхности. Сразу за­даем вопрос: по какой поверхности?

Ну, сперва по шаровой.

Хорошо. Подставим под ножницы глобус. Кратчай­шее расстояние на его сфере физик проведет вдоль нити, натянутой между А и В по шаровой поверхности. Оно отмеряется, очевидно, не прямой линией, а кривой — дугой большого круга.

Далее. Посадим наши точки на какую-нибудь седло­видную поверхность. Расстояние, проложенное туго на­тянутой ниткой, будет пройдено по другой кривой ли­нии — гиперболе.

Если же концы ножниц приложить к поверхности письменного стола, то расстояние между ними отмерится по линии, которую мы привыкли называть прямой.

Вот, кажется, добрались до прямизны. Срезав ножом седло или шар, получаем поверхности, в которых линии кратчайших расстояний — наикратчайшие. Так как будто?

Но можно ли быть абсолютно уверенным, что линия на столе абсолютно прямая? И что сам стол плоский?

Кажется, вопросы надуманные. Кажется, плоскость потому и плоскость, что она прямее всех поверхностей.

В действительности дело обстоит сложнее. Все зависит от пространства, в котором стоит наш стол. Само пространство, с точки зрения геометра, вправе быть искривленным. И в конечном счете именно от кривизны пространства зависят кратчайшие расстояния.

Кривые дрова

Геометриясамая древняя в обширной семье ма­тематических наук. И чуть ли не самая мудрая. Учи­теля единодушно признают ее лучшим пробным камнем математических способностей — она очень глубока по мысли, изящна, безупречно стройна.

Юный Эйнштейн, когда ему в руки попалась тонень­кая геометрическая книжечка, был восхищенно удив­лен открывшимся волшебством логического творчества: шаг за шагом из простейших постулатов вырастала гармония лемм и теорем, все более запутанных, тон­ких, подчас неожиданных. Великий физик назвал эту книжечку в числе отправных пунктов своего марафон­ского бега от удивлений.

Да, геометрия достойна высших похвал. Может быть, даже поэм и од.

Жаль, что их, кажется, еще не успели сочинить.

Зато на геометрические темы придумано порядочно поговорок и пословиц. Есть даже анекдоты.

Мне почему-то страшно нравится тот, где некий ма­шинист на паровозе кричит кочегару:

— Эй, кочегар, кидай в топку кривые дрова! Въез­жаем на поворот!

Эти фразы радуют своим несказанным идиотизмом.

Между тем изощренный физик-теоретик сумеет дать им кое-какое разумное истолкование. Чтобы уяс­нить это, нам придется заглянуть в геометрические первоосновы. Заодно мы поймем, что такое кривизна пространства.