Механические состояния деформируемых тел

В упругом состоянии деформации обратимы, и вся энергия, затраченная на деформирование, при разгрузке возвращается (диссипация энергии отсутствует). Для любого твердого тела процесс деформирования начинается с упругой деформации.

Изотропное тело имеет две константы упругости— модуль упругости Е и коэффициент Пуассона μ .

Для анизотропных тел число упругих констант в общем случае равно 21. Из основных констант упругости можно получить их производныемодуль сдвига G, модуль объемной деформации К и постоянную Ламе  λ.

Вязкое сопротивление  это сопротивление, в некотором смысле противоположное упругому. Работа внешних сил, уравновешенных силами вязкого сопротивления, полностью рассеивается в виде тепла. Вязкое сопротивление определяется величиной касательной силы, необходимой для поддержания ламинарного скольжения слоев, или течения с определенной скоростью. Таким образом, вязкость можно определить как сопротивление течению.

Представление о вязкоупругой деформации дает поведение моделей, сочетающих свойства вязкости и упругости в такой последовательности: при нагружении тела в нем возникает мгновенная упругая деформация, подчиняющаяся закону Гука; далее при том же максимальном напряжении наблюдается вязкая деформация, подчиняющаяся закону Ньютона.

Наиболее распространенными в теории линейной вязкоупругости являются реологические модели Максвелла и Фойгта (более подробно об этом — здесь), дающие связь между напряжениями и деформациями и скоростями их изменения:

2016-10-19-19-02-55-skrinshot-ekranaмодель Максвелла,

2016-10-19-19-06-29-skrinshot-ekranaмодель Фойгта,

где η— коэффициент вязкости.

Пластическое состояниехарактеризуется наличием остаточных деформаций, фиксируемых после снятия внешних нагрузок. Объем тела при пластической деформации не изменяется; условие постоянства объема записывается в виде 2016-10-19-19-10-38-skrinshot-ekrana , (эксперименты показывают, что изменение объема не превышает 0,5%).

В случае, когда все напряжения изменяются пропорционально одной из составляющих, в процессе пластической деформации направления главных деформаций совпадают с направлениями главных нормальных напряжений, направления максимальных сдвигов — с направлениями максимальных касательных напряжений, а главные направления девиатора напряжений — с главными направлениями девиатора деформаций.

Одной из распространенных моделей поведения материала при упругопластических деформациях является модель пластичности, основанная на деформационной теории Генки—Ильюшина.

Высокоэластическое состояниенаиболее характерно для полимеров; особенностями этого состояния являются большая изменяемость формы и деформирование без изменения объема. Для материалов, находящихся в высокоэластическом состоянии, наблюдается существенная зависимость их свойств от длительности и скорости нагружения, температуры и т. д.

Состояние разрушения состояние, при котором за счет интенсивного развития трещин в материале тела начинается нарушение его сплошности и непрерывности. Физический процесс разрушения материала представляется в виде двух основных стадий — стадии рассеянных разрушений (зарождение и развитие микроскопических трещин) и стадии развития магистральной трещины. Очаги зарождения микротрещин распределены по всему объему материала, находящегося в однородном напряженном состоянии, достаточно равномерно. Относительная длительность первой и второй стадии разрушения зависит от свойств материала, характера напряженного состояния и условий нагружения.