Влияние различных факторов на механические характеристики материалов

Зависимость механических характеристик конструкционных материалов от их химического состава, внешних условий и условий нагружения весьма многообразна; отметим наиболее существенные, характерные для типичных условий эксплуатации конструкций.

Влияние содержания углерода. Введение различных легирующих добавок в металлы позволяет значительно повысить прочностные характеристики сплавов. На рисунке показано влияние процентного содержания углерода на механические свойства конструкционной стали.

Влияние процентного содержания углерода

Влияние процентного содержания углерода

Как видно, с увеличением содержания углевода, временное сопротивление повышается в несколько раз; однако при этом значительно ухудшаются пластические свойства; относительное удлинение δ и относительное сужение ψ при разрыве уменьшаются.

Влияние температуры окружающей среды. Повышенные температуры оказывают существенное влияние на такие механические характеристики конструкционных материалов, как ползучесть и длительная прочность.

Ползучестью называют медленное непрерывное возрастание пластической (остаточной) деформации под воздействием постоянных нагрузок (более подробно о ползучести — здесь).

Длительной прочностью называется зависимость разрушающих напряжений (временного сопротивления) от длительности эксплуатации.

Свойства ползучести и длительной прочности проявляются у углеродистых сталей при t > 300oС, для легированных сталей при t > 350oС, для алюминиевых сплавов при t > 100oС.

Некоторые материалы проявляют эти свойства и при обычных температурах.

Мерой оценки ползучести материала является предел ползучести напряжение, при котором пластическая деформация за определенный промежуток времени достигает заданной величины. В некоторых случаях сопротивление ползучести оценивается величиной скорости деформации по прошествии заданного времени. При обозначении предела ползучести указывается величина деформации, время и температура испытаний. Например, для жаропрочного сплава ХН77ТЮР при температуре 700oС за время 100 часов и деформации ползучести 0,2%, предел ползучести составляет 400 МПа:

σ0,2/100(700) = 400 МПа

Ползучесть сопровождается релаксацией напряженийсамопроизвольным уменьшением напряжений с течением времени при неизменной деформации (более подробно — здесь).

Скорость релаксации напряжений возрастает при повышении температуры.

Мерой скорости релаксации служит время релаксациипромежуток времени, в течение которого напряжение уменьшается по сравнению с начальным значением в е=2,718 раза.

Прочность материала при повышенных температурах оценивается пределом длительной прочности напряжением, при котором материал разрушается не ранее заданного времени. При обозначении предела длительной прочности указывается продолжительность нагружения и температура испытания. Так, для сплава ХН77ТЮР при температуре 700oС и времени 1000 часов предел длительной прочности составляет 330 МПа . При кратковременных испытаниях для этого же сплава при температуре 700oС пределы прочности и текучести соответственно равны: σВ = 830 МПа,σ0,2 = 560 МПа.

Влияние повышенных температур на характеристики прочности и пластичности можно проследить на следущих рисунках, где представлены осредненные результаты экспериментов:

Влияние температуры на упругие свойства

Влияние температуры на упругие свойства


Влияние температуры на пластические свойства

Влияние температуры на пластические свойства

для — углеродистой стали, содержащей 0,15% углерода; 0,40% углерода, 3хромистой стали.

Прочность углеродистых сталей с повышением температуры до 650—700oС снижается почти в десять раз. Наиболее резкое снижение σВ наблюдается для алюминиевых сплавов. Наибольшими значениями σВ при высоких температурах обладают литые жаропрочные сплавы, содержащие 70—80% никеля. Снижение пределов текучести σТ с повышением температуры происходит примерно так же, как и снижение σВ.

Для углеродистых сталей характерным является ухудшение пластических свойств (охрупчивание) при температурах около 300oС (кривая 2 на рис. Влияние температуры на пластические свойства ).

Влияние температур на упругие свойства. Температурный коэффициент линейного расширения 2016-10-22-18-40-55-skrinshot-ekrana и температурный коэффициент модуля упругости 2016-10-22-18-41-47-skrinshot-ekranaсвязаны между собой соотношением η+αm=0, или η/α = -m =const,

где r и m постоянные, характеризующие параметры кристаллической решетки.

Зависимость модуля упругости от температуры

Зависимость модуля упругости от температуры

На рисунке приведена зависимость безразмерного модуля упругости Е/Е0 некоторых конструкционных материалов от температуры (E0— модуль упругости материала при обычной температуре): 1 — нержавеющая сталь; 2 алюминиевые сплавы, 3 углеродистые стали, 4 титановые сплавы.

Для сталей с повышением температуры испытаний с 25 до 450oС модули упругости Е и G уменьшаются на 20—40%, при этом, начиная с 300—400oС наблюдается расхождение между значениями модулей, определенными при статических и динамических испытаниях.

Изменение модулей упругости при малых колебаниях температуры (от –50 до +50oС) незначительно и им обычно пренебрегают.