Пара сил и ее действие на тело

Система двух равных и параллельных сил, направлен­ных в противоположные стороны и не лежащих на одной прямой, называется парой сил. Примером такой системы сил могут служить усилия, передаваемые от рук шофера на рулевое колесо автомобиля.

Пара сил имеет очень большое значение в практике. Именно поэтому свойства пары как специфической меры механического взаимодействия тел изучается отдельно.

Сумма сил пары равна нулю

Р — Р' = 0 (рис. а),

2016-07-23 15-50-25 Скриншот экрана

т. е. пара сил не имеет равнодействующей. Несмотря на это тело под действием пары сил не находится в равновесии.

Действие пары сил на твердое тело, как показывает опыт, состоит в том, что она стремится вращать это тело.

Способность пары сил производить вращение количественно определяется моментом пары, равным произведе­нию силы на кратчайшее расстояние (взятое по перпен­дикуляру к силам) между линиями действия сил.

Обозначим момент пары М, а кратчайшее расстояние между силами а, тогда абсолютная величина момента (рис. а)

М = Ра = Р'а.

Кратчайшее расстояние между линиями действия сил называется плечом пары, поэтому можно сказать, что момент пары сил по абсолютной величине равен произве­дению одной из сил пары на ее плечо.

Эффект действия пары сил полностью определяется ее моментом. Поэтому пару сил можно изображать дугооб­разной стрелкой, указывающей направление вращения (см.рис.).

2016-07-23 16-03-22 Скриншот экрана

Так как пара сил не имеет равнодействующей, ее нельзя уравновесить одной силой.

В Международной системе единиц (СИ) силу измеряют в ньютонах, а плечо в метрах. Соответственно момент пары в системе СИ измеряется в ньютонометрах (н·м) или в единицах, кратных ньютонометру: кн·м, Мн·м и т. д.

Будем считать момент пары сил положительным, если пара стремится повернуть тело по направлению хода часовой стрелки (рис. а) и отрицательным, если пара стремится вращать тело против хода часовой стрелки (рис. б).

2016-07-23 16-06-36 Скриншот экрана

Принятое правило знаков для моментов пар условно; можно было бы принять противоположное пра­вило. При решении задач во избежание путаницы всегда нужно принимать одно определенное правило знаков.