Проекция силы на ось

Часто геометрическое сложение векторов сил требует сложных и громоздких построений. В таких случаях прибегают к другому методу, где геометрическое построе­ние заменено вычислениями скалярных величин. Дости­гается это проектированием заданных сил на оси прямо­угольной системы координат.

Как известнее из математики, осью называют неограни­ченную прямую линию, которой приписано определенное направление. Проекция вектора на ось является скаляр­ной величиной, которая определяется отрезком оси, отсе­каемым перпендикулярами, опущенными из начала и конца вектора на ось.

Проекция вектора считается положительной (+), если направление от начала проекции к ее концу совпадает с положительным направлением оси. Проекция вектора считается отрицательной (), если направление от на­чала проекции к ее концу противоположно положитель­ному направлению оси.

Рассмотрим ряд случаев проектирования сил на ось.

  1. Дана сила Р (рис.а), она лежит в одной пло­скости с осью х. Вектор силы составляет с положительным направлением оси острый угол α.

2016-06-24 17-43-26 Скриншот экрана

Чтобы найти величину проекции, из начала и конца вектора силы опускаем перпендикуляры на ось х, полу­чаем

Рх = ab = Р cos α.

Проекция вектора в данном случае положительна.

2. Дана сила Q (рис. б), которая лежит в одной плоскости с осью х, но ее вектор составляет с положи­тельным направлением оси тупой угол α.

2016-06-24 17-47-44 Скриншот экрана

Проекция силы Q на ось х

Qх = ab = Q cos α,

но

cos a = — cos β.

Так как α > 90°, то cos cos α — отрицательная величина. Выразив cos α через cos β  (β — острый угол), оконча­тельно получим

Qх = — Q cos β

В этом случае проекция силы отрицательна.

Итак, проекция силы на ось координат равна произве­дению модуля силы на косинус угла между вектором силы и положительным направлением оси.

При определении проекции вектора силы на ось поль­зуются обычно косинусом острого угла, независимо от того, с каким направлением оси — положительным или отрицательным — он образо­ван. Знак проекции легче устанавливать непосредствен­но по чертежу.

Силу, расположенную на плоскости хОу, можно спроек­тировать на две координатные оси Ох и Оу. Рассмотрим рисунок.

2016-06-24 23-42-20 Скриншот экрана

На нем изображена сила Р и ее проекции Рх и Ру. Ввиду того что проекции образуют между собой прямой угол, из прямоугольного треугольника ABC следует:

2016-06-24 23-49-36 Скриншот экрана

Этими формулами можно пользоваться для определения величины и направления силы, когда из­вестны ее проекции на координатные оси. Эти же формулы могут применяться для определения величины и направ­ления любого вектора через его проекции.