Расчёт балок на прочность при изгибе

Задача 1

В некотором сечении балки прямоугольного сечения 20×30см М=28 кНм, Q=19 кН.

Требуется:

а) определить нормальное и касательное напряжения в заданной точке К, отстоящей от нейтральной оси на расстоянии 11 см,

б) проверить прочность деревянной балки, если [σ]=10 МПа, [τ]=3 МПа.

2014-09-15 23-00-10 Скриншот экрана

Решение

а) Для определения σ(К), τ(К) и maxσ,maxτ потребуется знать величины осевого момента инерции всего сечения IН.О., осевого момента сопротивления WН.О., статического момента отсечённой части  и статического момента половины сечения Smax:

2014-09-15 23-03-51 Скриншот экрана

Тогда:

2014-09-15 23-04-37 Скриншот экрана

б) Проверка прочности:

по условию прочности нормальных напряжений:

2014-09-15 23-06-19 Скриншот экрана

по условию прочности касательных напряжений:

2014-09-15 23-07-03 Скриншот экрана

Задача 2

В некотором сечении балки М=10кНм, Q=40кН. Поперечное сечение – треугольное. Найти нормальное и касательное напряжения в точке, отстоящей от нейтральной оси на расстоянии 15 см.

2014-09-15 23-08-51 Скриншот экрана

2014-09-15 23-09-59 Скриншот экранагде 2014-09-15 23-10-43 Скриншот экрана

Тогда

2014-09-15 23-11-50 Скриншот экранагде:

2014-09-15 23-12-50 Скриншот экранаТогда

2014-09-15 23-14-19 Скриншот экрана

Задача 3

Подобрать сечение деревянной балки в двух вариантах: круглое и прямоугольное (при h/b=2), если [σ]=10 МПа, [τ]=3 МПа, и сравнить их по расходу материала.

2014-09-15 23-15-57 Скриншот экрана

Задаёмся направлениями опорных реакций А и В и составляем уравнения статики:

(1)          ∑М(В) = F·8 – М А·6 + (q·6)·3 =0,

откуда 2014-09-15 23-17-43 Скриншот экрана

(2)          ∑М(А) = F·2 – М + В·6 — (q·6)·3 =0,

откуда 2014-09-15 23-18-54 Скриншот экрана

Iучасток   

2014-09-15 23-20-01 Скриншот экрана

М(С) = М(z1) +F·z1=0,

ММ(z1) = -F·z1= — 30 ·z1 —

– уравнение прямой.

При z1 = 0:      М = 0,

z1 = 2:      М =- 60 кНм.

у= — F — Q(z1) = 0,

Q(z1) = — F = -30 кН – постоянная функция.

II участок     

2014-09-15 23-22-35 Скриншот экрана2014-09-15 23-23-22 Скриншот экрана

откуда2014-09-15 23-24-24 Скриншот экрана

— уравнение параболы.

При z2=0:     М = 0,

z2=3м:  М = 30 · 3 – 5 · 32 = 90 — 45 = 45кНм,

z2=6м:  М = 30 · 6 – 5 · 62 = 180 — 180 = 0.

у= Q(z2) — q·z2 + B= 0,

Q(z2) = q·z2 — B= 10·z2 – 30 – уравнение прямой,

при  z2 = 0:     Q = -30,

        z2 = 6м:     Q = 10·6 – 30 = 30.

Определение аналитического максимума изгибающего момента второго участка:

из условия2014-09-15 23-26-48 Скриншот экрананаходим 2014-09-15 23-27-42 Скриншот экрана:

2014-09-15 23-28-30 Скриншот экранаИ тогда

2014-09-15 23-29-25 Скриншот экрана

Заметим, что скачок в эп.М расположен там, где приложен сосредоточенный момент М = 60кНм и равен этому моменту, а скачок в эп.Q – под сосредоточенной силой А = 60 кН.

Подбор сечения балок производится из условия прочности по нормальным напряжениям, куда следует подставлять наибольший по абсолютной величине изгибающий момент из эпюры М.

В данном случае максимальный момент по модулю М = 60кНм

2014-09-15 23-32-18 Скриншот экранаоткуда: :

2014-09-15 23-33-29 Скриншот экрана

а) сечение круглой формы d=?

2014-09-15 23-34-43 Скриншот экрана

б) сечение прямоугольной формы при h/b = 2:

2014-09-15 23-35-58 Скриншот экранатогда

2014-09-15 23-36-42 Скриншот экрана

Размеры сечения, определенные из условия прочности по нормальным напряжениям, должны удовлетворять также условию прочности по касательным напряжениям:

2014-09-15 23-37-53 Скриншот экрана

Для простых форм сечений известны компактные выражения наибольшего касательного напряжения:

для круглого сечения 2014-09-15 23-38-43 Скриншот экрана

для прямоугольного сечения 2014-09-15 23-39-29 Скриншот экрана

Воспользуемся этими формулами. Тогда

— для балки круглого сечения при 2014-09-15 23-40-46 Скриншот экрана:

2014-09-15 23-41-42 Скриншот экрана

— для балки прямоугольного сечения

2014-09-15 23-42-47 Скриншот экрана

Чтобы выяснить, какое сечение требует меньшего расхода материала, достаточно сравнить величины площадей поперечных сечений:

Апрямоугольного = 865,3см2 < Акруглого = 1218,6см2, следовательно, балка прямоугольного сечения в этом смысле выгоднее, чем круглого.

 

Задача 4

Подобрать двутавровое сечение стальной балки, если [σ]=160МПа, [τ]=80МПа. 

2014-09-16 23-34-51 Скриншот экрана

Задаёмся направлениями опорных реакций А и В и составляем два уравнения статики для их определения:

(1)              ∑М(А) = – М1 F  ·2 — (q·8)·4 + М2 + В·6 =0,

откуда 2014-09-16 23-36-10 Скриншот экрана

(2)      ∑М(В) = – М1А · 6 + F · 4 + (q·8)·2 + М2 =0,

откуда 2014-09-16 23-36-10 Скриншот экрана

Проверка:

у = АFq · 8 + В = 104 – 80 – 20 · 8 +136 = 240 – 240 ≡ 0.

2014-09-16 23-38-31 Скриншот экрана

М(С) = М(z1) - М1=0,

М(z1) = М1= 40 кНм – постоянная функция.   

у= — Q(z1) = 0,

Q(z1) = 0.

II участок 

2014-09-16 23-40-27 Скриншот экранапарабола.

Приz2=0:       М = 40 кНм,

z2=1м:    М = 40 + 104 – 10=134кНм,

z2=2м:    М = 40+ 104 · 2 – 10 · 22 = 208 кНм.

у=А q·z2 — Q(z2) = 0,

Q(z2) =Аq·z2 = 104 –  20·z2  – уравнение прямой,

при  z2 = 0:       Q = 104кН,

        z2 = 6м:    Q = 104 – 40 = 64кН.

III участок

2014-09-16 23-42-45 Скриншот экрана— парабола.

Приz3=0:       М = 24+40=-16 кНм,

z3=2м:    М = 24 + 136·2 — 10 (2+2)2 = 24 + 272 – 160 = 136кНм,

z3=4м:    М = 24 + 136·4 – 10 (2+4)2 = 24 + 544 – 360 = 208 кНм.

у=В q(2+z3 ) + Q(z3) = 0,

Q(z3) =- В + q(2+z3 ) = -136 + 20 (2+z3 )   – уравнение прямой,

при  z3 = 0:        Q = -136 + 40 = — 94кН,

        z3 = 4м:     Q = — 136 + 20 (2+4) = — 136 + 120 = — 16кН.

IV участок

2014-09-16 23-59-29 Скриншот экрана- парабола.

z4=0:       М = 0кНм,

z4=1м:    М = – 10кНм,

z4=2м:    М = — 40кНм.

у=- q·z4 + Q(z4) = 0,

Q(z4) =q·z4 = 20·z4  – уравнение прямой.

Приz4 = 0:       Q = 0,

        z4 = 2м:     Q = 40кН.

Проверяем скачки в эпюрах:

а) В эпюре М скачок на правой опоре величиной 24кНм (от 16 до 40) равен сосредоточенному моменту М2=24, приложенному в этом месте.

б) В эпюре Q три скачка:

первый из них на левой опоре соответствует сосредоточенной реакции А=104кН,

второй – под силой F=80кН и равен ей (64+16=80кН),

третий – на правой опоре и соответствует правой опорной реакции 136кН (94+40=136 кН)

Наконец, проектируем двутавровое сечение.

Подбор его размеров производится из условия прочности по нормальным напряжениям :

 2014-09-17 00-01-57 Скриншот экрана

В сортаменте двутавровых профилей профиля с точно таким моментом сопротивления Wх нет. Есть № 40а с Wх=1190 см3 и № 45а с Wх=1430 см3

Попробуем  меньший из них. Если принять двутавр № 40а, у которого Wх=1190 см3 , то наибольшее напряжение в опасном сечении будет:

2014-09-17 00-03-07 Скриншот экранаи перенапряжение составит2014-09-17 00-04-00 Скриншот экраначто превышает рекомендуемую величину отклонения, равную 5%.

Поэтому приходится принимать ближайший больший размер двутавра, а именно №45а, у которого Wх=1430 см3. В этом случае балка будет работать с недонапряжением:

2014-09-17 00-07-06 Скриншот экраначто меньше [σ]=160МПа на  2014-09-17 00-08-04 Скриншот экрана

Итак, принимается двутавр №45а, у которого: Wх=1430 см3, Iх=32240см4, Iх: Sх=38,6см, d=11,5мм.

Далее необходима проверка прочности по касательным напряжениям с помощью условия прочности :

 

2014-09-17 00-09-31 Скриншот экрана

Это условие прочности выполняется, даже с избыточным запасом.

 

Задача 5

Подобрать сечение балки, рассмотрев шесть вариантов форм и три вида материалов (древесина, чугун, сталь).

Решение 

2014-09-17 22-31-27 Скриншот экрана

1.Определение опорных реакций 

М(А) = F · 2 + М1 - М2q·6·7 + В · 8 =0,2014-09-17 22-32-56 Скриншот экранаМ(В) = F · 10 + М1М2А · 8 + q·6·1 =0,2014-09-17 22-33-50 Скриншот экранаПроверка:

у = – 20 – 40 ·6 +50+210 = — 260 + 260 ≡ 0.

2.Построение эпюр изгибающих моментов и поперечных сил.

I участок

2014-09-17 22-38-24 Скриншот экрана

М(С) = М(z1) + F·z1=0,

М(z1) = - F·z1= -20·z1.

При z1=0:     М = 0,

        z1=2м:  М = – 40кНм,

у= - FQ(z1) = 0,

Q(z1) = — 20кН.

II участок

2014-09-17 22-40-24 Скриншот экрана2014-09-17 22-41-19 Скриншот экрана

        z2=0:      М = — 20 – 40 = -60 кНм,

z2=4м:   М = 200 — 20 – 120 = 200 — 140 = 60кНм.

у=- F + А Q(z2) = 0,

Q =- F + А= -20+50=30кН.

III участок

2014-09-17 22-43-07 Скриншот экрана- парабола.

Приz3=0:      М = — 20·4= — 80 кНм,

z3=2м:   М = 210·2 — 20·(2+2)2 = 420 – 320 = 100кНм,

z3=4м:   М = 210·4 – 20 · (2+4)2 = 840 – 720 = 120кНм.

у= Q(z3) + В q·(2+z3) = 0,

Q(z3) = — В + q·(2+z3) = — 210 + 40·(2+z3) – уравнение прямой.

Приz3 = 0:       Q = -130кН,

        z3 = 4м:     Q = 30кН.

Q(z0) = — 210 + 40·(2+z0) = 0,

— 210 + 80 + 40·z0 = 0,

40·z0 = 130,

z0 =3,25м,

2014-09-17 22-44-56 Скриншот экрана

IV участок

2014-09-17 22-46-14 Скриншот экранапарабола.

Приz4=0:      М = 0 кНм,

z4=1м:   М = – 20кНм,

z4=2м:   М = — 80кНм.

у=- q·z4 + Q(z4) = 0,

Q(z4) =q·z4 = 40·z4  – уравнение прямой,

        z4 = 0:        Q = 0,

        z4 = 2м:     Q = 80кН.

3. Подбор сечений (опасное сечение по σ: |maxМ|=131,25кНм,

опасное сечение по τ: |maxQ|=130кН).

Вариант 1. Деревянное прямоугольное ([σ]=15МПа, [τ]=3МПа)

2014-09-17 22-49-56 Скриншот экрана

Принимаем: В=0,24м,

                         Н=0,48м.

Проверяем по τ:

2014-09-17 22-51-25 Скриншот экрана

Вариант 2. Деревянное круглое

2014-09-17 22-52-44 Скриншот экрана

Принимаем d=0,45м,2014-09-17 22-53-42 Скриншот экрана

Проверяем по τ:

2014-09-17 22-54-31 Скриншот экрана

Вариант 3. Чугун : ([σР]=30МПа, [σс]=120МПа, [τ]=15МПа)

2014-09-17 22-56-00 Скриншот экрана

Принимаем b=0,19м, тогда h=0,38м, d=0,076м.

Проверка по τ:

2014-09-17 22-57-04 Скриншот экрана

b(у)= b — d= 0,19 — 0,076 = 0,114м

2014-09-17 22-58-15 Скриншот экрана

Вариант 4. Сталь, двутавр : ([σ]=160МПа, [τ]=80МПа).

2014-09-17 23-02-55 Скриншот экрана 2014-09-17 23-05-31 Скриншот экрана

по сортаменту Wх=953см3. Это №40: Ix=19062см4, Sх=545см3, d=0,83см.

Проверка по τ:

2014-09-17 23-07-46 Скриншот экрана

Вариант 5. Сталь, круглая труба 2014-09-17 23-09-05 Скриншот экрана

2014-09-17 23-10-12 Скриншот экрана

Принимаем D=0,22м   →  d = 0,6·D =0,132м.

Проверка по τ:

2014-09-17 23-11-48 Скриншот экрана

Вариант 6. Сталь, прямоугольная труба  2014-09-17 23-13-25 Скриншот экрана

2014-09-17 23-14-10 Скриншот экрана

b1= b — 2t = b — 2·0,1b = 0,8b,

h1= h — 2= 0,8h,

2014-09-17 23-15-24 Скриншот экрана

Принимаем b=0,13м, h=0,26м.

Проверка по τ:

2014-09-17 23-17-20 Скриншот экрана

Кстати: какое из сечений стальной балки выгодней по расходу материала?

Двутавр —  А = 72,6см2 = 72,6·10-4 = 0,00726м2,

круглая труба2014-09-17 23-19-04 Скриншот экрана

прямоугольная труба2014-09-17 23-19-49 Скриншот экрана

Самый лёгкий: двутавр → самый выгодный с точки зрения изгиба.