Задача на определение перемещений по формуле Симпсона

Для стальной балки подобрать размеры поперечного сечения, состоящего из двух двутавров, на основе условия прочности по нормальным напряжениям, построить эпюры линейных и угловых перемещений. Дано: 2015-02-24 22-53-09 Скриншот экрана2015-02-24 22-56-51 Скриншот экрана

Расчет опорных реакций и значений грузовой эпюры (эпюры изгибающих моментов) приводить не будем, покажем без расчетов. Итак, грузовая эпюра моментов:2015-02-24 22-56-51 Скриншот экрана2015-02-24 23-25-45 Скриншот экрана

При этом на эпюре М у значений изгибающих моментов отсутствуют знаки, указываются волокна, испытывающие сжатие. Как видно из эпюры, в опасном сечении: МСmax=86,7кНм. 

Подберем сечение из двух двутавров. Из условия прочности2015-02-24 23-04-28 Скриншот экрана

Согласно сортаменту прокатной стали выбираем двутавр №27а, у которого Ix1=5500см3, h=27см. Фактическое значение осевого момента сопротивления всего сечения Wx=2Ix1/(h/2)=2·5500/(27/2)=815см3.

Вычисляем линейные и угловые перемещения сечения балки методом О.Мора, применяя формулу Симпсона. Выбор количества сечений, необходимого для построения эпюр линейных и угловых перемещений в балке, зависит от числа участков и характера эпюры изгибающих моментов. В рассматриваемой балке к  таким можно отнести сечения А, B, C, D (принадлежат границам силовых участков) и сечения 1, 2, 3 – в середине участков (определение перемещений в этих сечениях повышает точность построения эпюр).

Сечение А. Как известно, линейное перемещение сечения в шарнирной опоре yA=0.

Для вычисления углового перемещения θа загружаем вспомогательную систему единичной парой сил -моментом, равным единице2015-02-24 23-16-37 Скриншот экранаУравнения равновесия2015-02-24 23-17-49 Скриншот экрана

Решая уравнения равновесия, получим:

2015-02-24 23-18-35 Скриншот экрана

Определяем значения моментов в характерных сечениях

Участок АD: 2015-02-24 23-28-40 Скриншот экрана

В середине участка АВ значение изгибающего момента грузовой эпюры MF равно f=73,3·1- 80·12/2=33,3кНм

Определяем угловое перемещение сечения А по формуле Симпсона:2015-02-24 23-30-59 Скриншот экрана

Угловое перемещение сечения А направлено против часовой стрелки (противоположно действию единичного момента).

Сечение В

Прикладываем в  сечении В силу, равную единице, для определения линейного перемещения, и строим единичную эпюру моментов2015-02-24 23-35-48 Скриншот экрана

Уравнения равновесия:2015-02-24 23-36-37 Скриншот экрана

Из решения уравнений равновесия следует:

2015-02-24 23-37-20 Скриншот экрана

Определяем значения моментов в характерных сечениях:2015-02-24 23-38-31 Скриншот экрана

Определяем линейное перемещение yВ.2015-02-24 23-39-30 Скриншот экрана

Линейное перемещение  yВ=3,65×10-3м  направлено вверх (противоположно действию единичной силы).

Для определения углового перемещения в сечении В прикладываем единичный момент и строим единичную эпюру моментов.2015-02-24 23-42-45 Скриншот экрана

В результате «перемножения»  единичной эпюры  и грузовой эпюры  получим угловое перемещение:2015-02-24 23-43-55 Скриншот экрана

Угловое перемещение направлено против часовой стрелки.

Сечение С.

2015-02-24 23-45-05 Скриншот экрана

 

Линейное перемещение:2015-02-24 23-46-03 Скриншот экрана

Линейное перемещение yС=5,4 ×10-3 м направлено вверх.

Угловое перемещение:2015-02-24 23-47-16 Скриншот экрана

2015-02-24 23-47-51 Скриншот экрана

Угловое перемещение направлено по часовой стрелке.

Сечение D. Линейное перемещение в данном сечении равно нулю.

Угловое перемещение:

2015-02-24 23-49-20 Скриншот экрана

2015-02-24 23-50-42 Скриншот экрана

Угловое перемещение  направлено по часовой стрелке.

Дополнительные сечения:

Сечение 1 (z=0,5ℓ)

2015-02-24 23-52-43 Скриншот экрана2015-02-24 23-53-15 Скриншот экрана

Линейное перемещение y1=1,34×10-3м  направлено вверх;

Угловое перемещение:2015-02-24 23-54-15 Скриншот экрана2015-02-24 23-54-47 Скриншот экрана

Угловое перемещение направлено против часовой стрелки.

Аналогично строим единичные эпюры для сечения 2 (z=1,5ℓ) и сечения 3 (z=2,5ℓ),находим перемещения.

Применяя правило знаков для линейных перемещений вверх — плюс, вниз — минус, а для угловых перемещений против часовой стрелки — плюс, по часовой стрелке – минус, строим эпюры линейных и угловых перемещений y и θ.2015-02-24 22-56-51 Скриншот экрана2015-02-25 00-00-38 Скриншот экрана